Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Plant Direct ; 8(4): e578, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601948

RESUMO

Mass spectrometry-based plant metabolomics is frequently used to identify novel natural products or study the effect of specific treatments on a plant's metabolism. Reliable sample handling is required to avoid artifacts, which is why most protocols mandate shock freezing of plant tissue in liquid nitrogen and an uninterrupted cooling chain. However, the logistical challenges of this approach make it infeasible for many ecological studies. Especially for research in the tropics, permanent cooling poses a challenge, which is why many of those studies use dried leaf tissue instead. We screened a total of 10 extraction and storage approaches for plant metabolites extracted from maize leaf tissue across two cropping seasons to develop a methodology for agroecological studies in logistically challenging tropical locations. All methods were evaluated based on changes in the metabolite profile across a 2-month storage period at different temperatures with the goal of reproducing the metabolite profile of the living plant as closely as possible. We show that our newly developed on-site liquid-liquid extraction protocol provides a good compromise between sample replicability, extraction efficiency, material logistics, and metabolite profile stability. We further discuss alternative methods which showed promising results and feasibility of on-site sample handling for field studies.

2.
Heliyon ; 10(7): e28749, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586393

RESUMO

Declining soil fertility particularly phosphorus deficiency, low organic carbon, moisture stress and high cost of input are factors limiting soybean yield in the Nigeria savanna. Supplementary irrigation, nutrient application and inoculation with Bradyrhizobium could increase the grain yield of soybean. We evaluated the effects of Rhizobia inoculant, phosphorus fertilization, manure, and supplementary irrigation on the nodulation and productivity of a tropical soybean variety in two locations in northern Nigeria in the 2017 and 2018 cropping seasons. The treatments consisted of five input bundles: Supplementary irrigation +17.5 kg P ha-1 + 4 t ha-1 poultry manure + nodumax inoculant (S + P + M + I); 17.5 kg P ha-1 + 4 t ha-1 poultry manure + nodumax inoculant (P + M + I); 17.5 kg P ha-1 + nodumax inoculant (P + I); 17.5 kg PP ha-1 (P); and nodumax inoculant (I). Economic analysis was done to determine the benefit-cost ratio (BCR) for each input bundle. In Kano, the input bundle S + P + M + I produced mean number of nodules that were 38, 102, 200 and 352% higher than that of input bundles P + M + I, P + I, P and I, respectively. At Lere, the application of input bundle S + P + M + I increased mean number of nodules by 33, 81, 93 and 182% over that of input bundles P + M + I, P + I, P and I, respectively. Mean grain yield in Kano was greater for input bundle S + P + M + I over P + M + I, P + I, P and I bundles by 31, 50, 64 and 223%, respectively. In Lere, grain yield for input bundle S + P + M + I was higher than that of input bundles P + M + I, P + I, P and I only, by 27, 47, 41 and 184% respectively. The input bundle P + M + I produced the highest BCR (1.4) in Kano and application only of P produced the highest BCR (1.3) in Lere. Supplementary irrigation was not found to be profitable due to the high cost of supplementary irrigation.The application of P with or without manure/inoculant is recommeded for profitable soybean production in the savannas of Nigeria.

3.
New Phytol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622779

RESUMO

Plant pollen is rich in protein, sterols and lipids, providing crucial nutrition for many pollinators. However, we know very little about the quantity, quality and timing of pollen availability in real landscapes, limiting our ability to improve food supply for pollinators. We quantify the floral longevity and pollen production of a whole plant community for the first time, enabling us to calculate daily pollen availability. We combine these data with floral abundance and nectar measures from UK farmland to quantify pollen and nectar production at the landscape scale throughout the year. Pollen and nectar production were significantly correlated at the floral unit, and landscape level. The species providing the highest quantity of pollen on farmland were Salix spp. (38%), Filipendula ulmaria (14%), Rubus fruticosus (10%) and Taraxacum officinale (9%). Hedgerows were the most pollen-rich habitats, but permanent pasture provided the majority of pollen at the landscape scale, because of its large area. Pollen and nectar were closely associated in their phenology, with both peaking in late April, before declining steeply in June and remaining low throughout the year. Our data provide a starting point for including pollen in floral resource assessments and ensuring the nutritional requirements of pollinators are met in farmland landscapes.

4.
Plants (Basel) ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592939

RESUMO

In order to evaluate the potential of climate change mitigation measures on soil physiochemical properties, an experiment based on the application of five agroecological practices such as the addition of composted olive-mill wastes, recycling pruning residue, cover crops, organic insect manure, and reduced soil tillage, solely or combined, was conducted over two years (2020 to 2022) in a 48-year-old olive plantation. The results showed significant increases in soil water content during the spring and summer periods for the combined treatment (compost + pruning residue + cover crops) (ALL) compared to the control (CONT) by 41.6% and 51.3%, respectively. Also, ALL expressed the highest soil organic matter (4.33%) compared to CONT (1.65%) at 0-10 cm soil depth. When comparing soil nutrient contents, ALL (37.86 mg kg-1) and cover crops (COVER) (37.21 mg kg-1) had significant increases in soil nitrate compared to CONT (22.90 mg kg-1), the lowest one. Concerning exchangeable potassium, ALL (169.7 mg kg-1) and compost (COMP) (168.7 mg kg-1) were higher than CONT (117.93 mg kg-1) at the 0-10 cm soil depth and had, respectively an increase of 100.9% and 60.7% in calcium content compared to CONT. Over the experimental period, the implementation of the five agroecological management practices resulted in enhanced soil fertility. In a long-term Mediterranean context, this study suggests that these sustainable practices would significantly benefit farmers by improving agroecosystem services, reducing reliance on synthetic fertilizers, optimizing irrigation water use, and ultimately contributing towards a circular economy.

5.
Curr Dev Nutr ; 8(Suppl 1): 101998, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38476720

RESUMO

Agroecology has been proposed as a holistic approach to transform food systems that meet global food requirements with favorable environmental and social impacts. Agroecology relies on science, practices, and social movements that emphasize ecological principles, local knowledge, culture, and traditions to increase the sustainability and equity of the food system. Agroecological practices have demonstrated positive outcomes on food security and nutrition in low- and middle-income countries (LMICs). Agroecology principles can be applied across the food system and could facilitate the integration of certain alternative protein (AP) foods to address multiple issues. In this perspective, agroecological principles were analyzed to compare the suitability of different AP sources: unprocessed/minimally processed legumes, plant-based meats, edible insects, macroalgae (seaweed), fungal biomass, and cultivated meat. Considerations were identified for the feasibility of AP adoption in LMICs within an agroecological framework to provide nutrient-rich and sustainable diets while addressing other principles such as fairness and economic diversity. From this analysis, legumes, simplified plant-based meat analogs such as texturized plant proteins with minimal additives, edible insects, and macroalgae (location dependent) would make excellent nutritional contributions alongside animal-sourced food within LMICs within an agroecological framework. In contrast, highly processed plant-based meats, fungal biomass, and cultivated meat do not align well with agroecological principles for large-scale human consumption within LMICs. Furthermore, the production facilities to make these foods require robust capital investment and there may be issues related to who owns the intellectual property of these technologies. The NOVA classification system categorizes food based on the degree of processing. Our assessment suggests that foods with lower NOVA classification of unprocessed and minimally processed best fit the agroecological principles related to nutrition, agroecosystem, and societal demands for sustainable food systems.

6.
J Chem Ecol ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470529

RESUMO

The cabbage aphid (Brevicoryne brassicae) is a major pest of kale (Brassica oleraceae var. acephala), an important vegetable that is grown worldwide due to its high nutritional and economic value. Brevicoryne brassicae poses a great challenge to B. oleraceae var. acephala production, causing significant direct and indirect yield losses. Farmers overly rely on synthetic insecticides to manage the pest with limited success owing to its high reproductive behavior and development of resistance. This necessitates a search for sustainable alternatives to mitigate these challenges. This study assessed behavioral responses of B. brassicae to odors from rosemary (Rosmarinus officinalis) and B. oleraceae var. acephala headspace volatiles in a Perspex four-arm olfactometer. We identified and quantified volatiles emitted by each of the two plants and those eliciting antennal response using coupled gas chromatography-mass spectrometry (GC-MS) and GC-electroantennograhic detection(GC-EAD), respectively. Our findings revealed that B. brassicae spent more time in the arms of the olfactometer that contained B. oleraceae var. acephala volatiles compared to the arm that held R. officinalis volatiles. Additionally, B. brassicae spent more time in the olfactometer arms with B. oleracea var. acephala compared to the arms holding B. oleracea var. acephala and R. officinalis enclosed together and clean air. GC-MS analysis revealed diverse and higher quantities of volatile compounds in R. officinalis compared to B. oleraceae var. acephala. GC-EAD analysis showed that antennae of B. brassicae detected Linalool, α-Terpineol, Verbenone, Geraniol, Camphor, and Borneol from the volatiles of R. officinalis, and Sabinene, γ-Terpinene, and ß-Caryophyllene from B. oleraceae var. acephala volatiles. Our findings demonstrate the potential of R. officinalis as a repellent plant against B. brassicae and could be utilized as a 'push' plant in an intercropping strategy against this pest.

7.
Ecol Appl ; 34(3): e2956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38426805

RESUMO

Gastrointestinal helminth parasites undergo part of their life cycle outside their host, such that developmental stages interact with the soil and dung fauna. These interactions are capable of affecting parasite transmission on pastures yet are generally ignored in current models, empirical studies and practical management. Dominant methods of parasite control, which rely on anthelmintic medications for livestock, are becoming increasingly ineffective due to the emergence of drug-resistant parasite populations. Furthermore, consumer and regulatory pressure on decreased chemical use in agriculture and the consequential disruption of biological processes in the dung through nontarget effects exacerbates issues with anthelmintic reliance. This presents a need for the application and enhancement of nature-based solutions and biocontrol methods. However, successfully harnessing these options relies on advanced understanding of the ecological system and interacting effects among biotic factors and with immature parasite stages. Here, we develop a framework linking three key groups of dung and soil fauna-fungi, earthworms, and dung beetles-with each other and developmental stages of helminths parasitic in farmed cattle, sheep, and goats in temperate grazing systems. We populate this framework from existing published studies and highlight the interplay between faunal groups and documented ecological outcomes. Of 1756 papers addressing abiotic drivers of populations of these organisms and helminth parasites, only 112 considered interactions between taxa and 36 presented data on interactions between more than two taxonomic groups. Results suggest that fungi reduce parasite abundance and earthworms may enhance fungal communities, while competition between dung taxa may reduce their individual effect on parasite transmission. Dung beetles were found to impact fungal populations and parasite transmission variably, possibly tied to the prevailing climate within a specific ecological context. By exploring combinations of biotic factors, we consider how interactions between species may be fundamental to the ecological consequences of biocontrol strategies and nontarget impacts of anthelmintics on dung and soil fauna and how pasture management alterations to promote invertebrates might help limit parasite transmission. With further development and parameterization the framework could be applied quantitatively to guide, prioritize, and interpret hypothesis-driven experiments and integrate biotic factors into established models of parasite transmission dynamics.


Assuntos
Anti-Helmínticos , Besouros , Parasitos , Animais , Bovinos , Ovinos , Solo/química , Fezes , Ruminantes
8.
Ecol Lett ; 27(3): e14412, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38549269

RESUMO

Agricultural intensification not only increases food production but also drives widespread biodiversity decline. Increasing landscape heterogeneity has been suggested to increase biodiversity across habitats, while increasing crop heterogeneity may support biodiversity within agroecosystems. These spatial heterogeneity effects can be partitioned into compositional (land-cover type diversity) and configurational heterogeneity (land-cover type arrangement), measured either for the crop mosaic or across the landscape for both crops and semi-natural habitats. However, studies have reported mixed responses of biodiversity to increases in these heterogeneity components across taxa and contexts. Our meta-analysis covering 6397 fields across 122 studies conducted in Asia, Europe, North and South America reveals consistently positive effects of crop and landscape heterogeneity, as well as compositional and configurational heterogeneity for plant, invertebrate, vertebrate, pollinator and predator biodiversity. Vertebrates and plants benefit more from landscape heterogeneity, while invertebrates derive similar benefits from both crop and landscape heterogeneity. Pollinators benefit more from configurational heterogeneity, but predators favour compositional heterogeneity. These positive effects are consistent for invertebrates and vertebrates in both tropical/subtropical and temperate agroecosystems, and in annual and perennial cropping systems, and at small to large spatial scales. Our results suggest that promoting increased landscape heterogeneity by diversifying crops and semi-natural habitats, as suggested in the current UN Decade on Ecosystem Restoration, is key for restoring biodiversity in agricultural landscapes.


Assuntos
Biodiversidade , Ecossistema , Animais , Europa (Continente) , Produtos Agrícolas , Agricultura/métodos
9.
Agric For Entomol ; 26(1): 126-134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38516031

RESUMO

In the Colombian Amazon, there has been long-term and sustained loss of primary forest threatening biodiversity and climate change mitigation. Silvopastoral practices that integrate trees into livestock production could help address both local economic and wider environmental challenges.We aimed to assess the effects of silvopastoral practices on invertebrate communities on smallholder farms in Caquetá, Colombia. Using sweep nets and malaise trapping, invertebrate communities were compared between traditional pasture, silvopasture and forest edge habitats.Invertebrate communities collected using sweep nets were contrasting among habitat types, communities were significantly different between traditional pasture and forest edge habitats and diversity and evenness were greatest in forest edges compared to traditional pastures. It appears that silvopasture areas, by supporting similar invertebrate assemblages to both traditional pasture and forest edges, may be acting as an intermediate habitat.When individual invertebrate orders were compared, Lepidoptera and Coleoptera were found in greater abundance in the forest edge habitats, while Hemiptera were more abundant in traditional pasture. Hemipterans are often pests of forage plants in pasture systems and these differences in abundance may have implications for ecosystem services and disservices.Silvopastoral approaches cannot replace the unique biodiversity supported by native forests but could deliver benefits for invertebrate conservation and ecosystem services if integrated into landscapes.


Resumen: En la Amazonía colombiana ha habido una pérdida sostenida y a largo plazo de bosque primario que amenaza la biodiversidad y la mitigación del cambio climático. Las prácticas silvopastoriles que integran los árboles en la producción ganadera podrían ayudar a abordar tanto los desafíos económicos locales como los ambientales.Nuestro objetivo fue evaluar los efectos de las prácticas silvopastoriles en comunidades de invertebrados en pequeñas fincas en Caquetá, Colombia. Las comunidades de invertebrados se compararon entre las pasturas nativas, el sistema silvopastoril y los hábitats del borde del bosque mediante el uso redes entomológicas de barrido y trampas Malaise.Las comunidades de invertebrados recolectadas usando redes entomológicas de barrido contrastaban entre los tipos de hábitat. Las comunidades eran significativamente diferentes entre las pasturas nativas y el borde de bosque. Pareciera que las áreas de silvopastoreo, al soportar conjuntos de invertebrados similares tanto a las pasturas nativas como a los bordes del bosque, pueden estar actuando como un hábitat intermedio.Cuando se compararon los órdenes individuales de invertebrados, los lepidópteros y los coleópteros se encontraron en mayor abundancia en los hábitats del borde del bosque, mientras que los hemípteros eran más abundantes en las pasturas nativas. Los hemípteros son a menudo plagas de plantas forrajeras en sistemas de pastoreo y estas diferencias en abundancia pueden tener implicaciones y perjuicios para los servicios ecosistémicos.Los sistemas silvopastoriles no pueden reemplazar la biodiversidad única apoyada por los bosques nativos, pero podrían ofrecer beneficios para la conservación de invertebrados y los servicios ecosistémicos si se integran en los paisajes.

10.
Front Plant Sci ; 15: 1354672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510443

RESUMO

During the last decade, research has shown the environment and human health benefits of growing buckwheat (Fagopyrum spp.). This comprehensive review aims to summarize the major advancements made in the study of buckwheat from 2013 to 2023, focusing on its agronomic characteristics, nutritional value, and potential applications in sustainable agriculture. The review examines the diverse applications of buckwheat in organic and agroecological farming systems, and discusses the ability of buckwheat to control weeds through allelopathy, competition, and other sustainable farming methods, such as crop rotation, intercropping and green manure, while improving soil health and biodiversity. The review also explores the nutritional value of buckwheat. It delves into the composition of buckwheat grains, emphasizing their high protein content, and the presence of essential amino acids and valuable micronutrients, which is linked to health benefits such as lowering cholesterol levels, controlling diabetes and acting against different types of cancer, among others. Finally, the review concludes by highlighting the gaps in current knowledge, and proposing future research directions to further optimize buckwheat production in organic or agroecological farming systems. It emphasizes the need for interdisciplinary collaboration, and the integration of traditional knowledge with modern scientific approaches to unlock the full potential of buckwheat as a sustainable crop.

11.
Life (Basel) ; 14(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38398690

RESUMO

Before the invasion of the fall armyworm (FAW) Spodoptera frugiperda into Africa, smallholder farmers had been using indigenous practices such as applying fish soup to plants to manage stemborer pests. Although farmers have since begun adapting this practice against FAW, no attempt has been made to scientifically evaluate this practice. Therefore, we assessed the efficacy of applying fish soup to maize plants that were artificially infested with FAW under semi-field conditions. Our results showed that foliar damage is inversely correlated with the concentration of a fish soup and sugar solution, with the highest (100%) concentration resulting in the lowest foliar damage and the highest plant recovery. The FAW foliar damage results for maize plants treated with 100%, 50%, 10% fish soup and sugar, and distilled water were 46.3 ± 5.6, 51.1 ± 5.0, 71.6 ± 5.2, and 99.4 ± 0.4%, respectively, whereas plant recovery results from the same treatments were 35.2 ± 3.7, 31.1 ± 5.4, 20.0 ± 4.6, and 0.0 ± 0.0%, respectively. A concentration of fish soup and sugar solution of at least 25.9% was required to achieve the lowest foliar damage of 17.8% and peak plant recovery of 73.6%. Fish soup and sugar solutions attracted a wide range of insects, including potential natural enemies (predators and parasitoids) of FAW, in a dose-dependent manner. Maize plants treated with fish soup and sugar showed higher chlorophyll content and better growth than the control did. Proximate and chemical analysis showed that fish soup contains essential plant growth nutrients (e.g., nitrogen, phosphorus, and calcium). Through GC-MS analyses, we identified 76 volatile organic compounds in fish soup, of which 16 have been reported as insect attractants, highlighting their potential ecological significance. Therefore, the indigenous pest management practices for FAW, such as the use of fish soup, deserve particular attention. These practices could contribute to food security and improve the livelihoods of vulnerable communities. Further field validation studies, economic analyses, product development, and optimisation are therefore required to optimise the use of fish soup based on fish waste.

12.
Glob Chang Biol ; 30(1): e17034, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273527

RESUMO

Redesigning agrosystems to include more ecological regulations can help feed a growing human population, preserve soils for future productivity, limit dependency on synthetic fertilizers, and reduce agriculture contribution to global changes such as eutrophication and warming. However, guidelines for redesigning cropping systems from natural systems to make them more sustainable remain limited. Synthetizing the knowledge on biogeochemical cycles in natural ecosystems, we outline four ecological systems that synchronize the supply of soluble nutrients by soil biota with the fluctuating nutrient demand of plants. This synchrony limits deficiencies and excesses of soluble nutrients, which usually penalize both production and regulating services of agrosystems such as nutrient retention and soil carbon storage. In the ecological systems outlined, synchrony emerges from plant-soil and plant-plant interactions, eco-physiological processes, soil physicochemical processes, and the dynamics of various nutrient reservoirs, including soil organic matter, soil minerals, atmosphere, and a common market. We discuss the relative importance of these ecological systems in regulating nutrient cycles depending on the pedoclimatic context and on the functional diversity of plants and microbes. We offer ideas about how these systems could be stimulated within agrosystems to improve their sustainability. A review of the latest advances in agronomy shows that some of the practices suggested to promote synchrony (e.g., reduced tillage, rotation with perennial plant cover, crop diversification) have already been tested and shown to be effective in reducing nutrient losses, fertilizer use, and N2 O emissions and/or improving biomass production and soil carbon storage. Our framework also highlights new management strategies and defines the conditions for the success of these nature-based practices allowing for site-specific modifications. This new synthetized knowledge should help practitioners to improve the long-term productivity of agrosystems while reducing the negative impact of agriculture on the environment and the climate.


Assuntos
Ecossistema , Solo , Humanos , Agricultura , Plantas , Carbono
13.
Sci Total Environ ; 914: 169882, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215842

RESUMO

Aligning crop production with conservation initiatives has long been a topic of debate, with agricultural intensification threatening biodiversity across the globe. Shade-grown coffee allows farmers to preserve biodiversity by providing viable habitat, but its conservation value remains unclear. In this meta-analysis, we screened existing literature using the PRISMA protocol to compare the effect of three shade intensities on species diversity and individual abundance: sun, low shade (LS) and high shade (HS). Furthermore, we examine differences between taxa, within taxa and between regions to establish which species benefit most from shade and whether these benefits vary dependent on geographical location. Out of 1889 studies, we included 69 studies in the analysis, and performed random-effects meta-analyses and meta-regressions. Overall, we found that species diversity was significantly higher in HS when compared to sun and LS, and species diversity in LS tended to be higher than in sun. In each treatment, the species diversity of birds was higher in the higher shade treatment, i.e., HS and LS. In addition, mammal and epiphyte species diversity was higher in HS when compared to LS. Similarly, studies from Latin America showed significantly higher species diversity and abundance in shaded farms when compared to sun farms. Studies conducted in Africa detailed the opposite relationship, with abundance being significantly higher in less shaded systems, highlighting that land-use strategies must be region-specific. Moving forward, strategies to conserve biodiversity within coffee farms should: 1) account for region-specific variables; 2) end further encroachment; 3) maintain connectivity; and 4) optimise yield through prioritising faunal and floral diversity.


Assuntos
Café , Conservação dos Recursos Naturais , Animais , Fazendas , Conservação dos Recursos Naturais/métodos , Biodiversidade , Ecossistema , Agricultura/métodos , Mamíferos
14.
BMC Ecol Evol ; 24(1): 10, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243160

RESUMO

BACKGROUND: Artificial light at night, also referred to as light pollution (LP), has been shown to affect many organisms. However, little is known about the extent to which ecological interactions between earthworms and plants are altered by LP. We investigated the effects of LP on anecic earthworms (Lumbricus terrestris) that come to the surface at night to forage and mate, and on the germination and growth of the invasive and allergenic ragweed (Ambrosia artemisiifolia). In a full factorial pot experiment in the greenhouse, we tested four factors and their interactions: LP (5 lux vs. 0 lux at night), earthworms (two individuals vs. none), plant species (seeding of ragweed only vs. mixed with Phacelia seeds) and sowing depth (seed placed at the surface vs. in 5 cm depth). Data were analysed using Generalized Linear (Mixed) Models and multifactorial ANOVAs with soil parameters as covariates. RESULTS: Light pollution reduced earthworm surface activity by 76% as measured by casting activity and toothpick index; 85% of mating earthworms were observed in the absence of LP. Light pollution in interaction with earthworms reduced ragweed germination by 33%. However, LP increased ragweed height growth by 104%. Earthworms reduced ragweed germination especially when seeds were placed on the soil surface, suggesting seed consumption by earthworms. CONCLUSIONS: Our data suggest that anecic earthworms are negatively affected by LP because reduced surface activity limits their ability to forage and mate. The extent to which earthworm-induced ecosystem services or community interactions are also affected by LP remains to be investigated. If the increased height growth of ragweed leads to increased pollen and seed production, it is likely that the competition of ragweed with field crops and the risks to human health will also increase under LP.


Assuntos
Oligoquetos , Animais , Humanos , Ecossistema , Ambrosia , Poluição Luminosa , Solo
15.
BMC Ecol Evol ; 24(1): 9, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233768

RESUMO

BACKGROUND: Poor agricultural practices have drastically threatened insect pollinators' biodiversity. Little is known in Tanzania about how different agricultural practices affect pollinators' foraging behavior. This study investigated the effects of the agroecological zone, season, cucurbit species and management practices on visitation frequency, visitation rate and time spent on cucurbit flowers by five pollinator species viz. Apis mellifera, Eristalinus megacephalus, Mesembrius caffer, Paragus borbonicus and Toxomerus floralis. The experiment was designed as a 5 × 3 × 3 × 2 × 2 factorial arrangement in a Randomized Complete Block Design (RCBD) with four replications. GAMOUR-Agroecology was tested against conventional practices and untreated control. RESULTS: This study revealed significant effects of agroecological zone × season × cucurbit species × management practice on pollinators' visitation frequency (p = 0.007) and time spent on flowers (p = 0.005). Also, agroecological zone × season × cucurbit species × pollinator species significantly (p < 0.0001) affected pollinators' visitation frequency. Agroecological zones × season × cucurbit species × cucurbits management practices × pollinators significantly (p = 0.001) affected pollinators' visitation rate. Apis mellifera was the most frequent visitor in Cucurbita moschata plots treated with GAMOUR- Agroecology in the plateau zone, also, visited higher number of Cucumis sativus plots under GAMOUR-Agroecology practices in the mountainous zone during the October-November season. Furthermore, it has been found that pollinators spent much in cucurbit flowers on plots with GAMOUR-Agroecology practices and control. CONCLUSIONS: Pollinators' foraging behavior were enhanced by GAMOUR-Agroecology practices. Therefore, this study recommended that cucurbit growers should consider management practices that positively influence pollinator foraging activities for sustainable cucurbit production.


Assuntos
Cucurbita , Dípteros , Comportamento Alimentar , Polinização , Animais , Abelhas , Flores , Insetos , Tanzânia , Comportamento Animal
16.
J Environ Manage ; 351: 119653, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070421

RESUMO

Agricultural lands are integrated into and interact with natural areas. Such is the case of Emek HaMa'ayanot, northern Israel, comprising a springs-rich area characterized by multiple land-uses, including spring-water-based aquaculture, recreational springs, and nature reserves. Aquacultural farms suffer from pest snails that carry fish disease; in the study region, these species are invasive (Thiara scabra, Tarebia granifera, Pseudosuccinea columella) and outbreak endemic (Melanoides tuberculata). Previous snail control efforts have focused on individual fishponds without considering management on larger environmental scales in the waterways from the source springs to the fish farms. To broaden our understanding of the status of the pest snail problem in the study area prior to suggesting environmental managerial solutions, we quantified changes in the community composition of snail species along the springs-to-fishponds gradients in a spatially explicit system. We found a remarkable increase in pest snail abundances along these gradients, indicating that pest snails might be invading upstream towards the springs. There were always nearly 100% pest snails in the endpoint sites for water tracks that ended in fishponds. Moreover, pest snails dominated the site when it was used as a fishpond, even though the site was also a spring. In contrast, in a water track that does not end in a fish farm, the relative abundances of non-pest snail species was similar between the source spring and the downstream endpoint, in spite of an increase in pest snail abundance at a midpoint site. These results suggest that invasive pest snails are actively moving upstream and that the fishponds have a marked upstream effect on the ability of non-pest snails to resist pest species invasions. We suggest further investigation of possible strategies for biocontrol of the observed invasion of the snails into natural areas as a basis for environmental management efforts. Finally, the observations made during this study could have practical global implications for snail management in aquaculture and agriculture, and for the control of snails and snail vectors implicated in animal and human diseases.


Assuntos
Aquicultura , Pesqueiros , Animais , Humanos , Alimentos , Água , Israel
17.
Ecol Appl ; 34(2): e2938, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38071736

RESUMO

The simplification and fragmentation of agricultural landscapes generate effects on insects at multiple spatial scales. As each functional group perceives and uses the habitat differently, the response of pest insects and their associated natural enemies to environmental changes varies. Therefore, landscape structure may have consequences on gene flow among pest populations in space. This study aimed to evaluate the effects of local and landscape factors, at multiple scales, on the local infestation, gene flow and broad dispersion dynamics of the pest insect Bemisia tabaci (Genn.) Middle East-Asia Minor 1 (MEAM-1, former biotype B) (Hemiptera: Aleyrodidae) and its associated natural enemies in a tropical agroecosystem. We evaluated the abundance of B. tabaci populations and their natural enemy community in 20 tomato farms in Brazil and the gene flow between farms from 2019 to 2021. Landscapes dominated by agriculture resulted in larger B. tabaci populations and higher gene flow, especially in conventional farms. A higher density of native vegetation patches disfavored pest populations, regardless of the management system. The results revealed that whitefly responds to intermediate spatial scales and that landscape factors interact with management systems to modulate whitefly populations on focal farms. Conversely, whitefly natural enemies benefited from higher amounts of natural vegetation at small spatial scales, while the connectivity between natural habitat patches was beneficial for natural enemies regardless of the distance from the focal farm. The resulting dispersion model predicts that the movement of whiteflies between farms increases as the amount of natural vegetation decreases. Our findings demonstrate that landscape features, notably landscape configuration, can mediate infestation episodes, as they affect pest insects and natural enemies in opposite ways. We also showed that landscape features interact with farm traits, which highlights the need for management strategies at multiple spatial scales. In conclusion, we demonstrated the importance of the conservation of natural areas as a key strategy for area-wide ecological pest management and the relevance of organic farming to benefit natural enemy communities in tropical agroecosystems.


Assuntos
Agricultura , Fluxo Gênico , Fazendas , Brasil , Movimento
18.
Data Brief ; 52: 109988, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38152494

RESUMO

This data article is a result of research conducted by a multidisciplinary team of researchers with the aim of analyzing agroecological transition and performance of agroecology in Ethiopia. It was conducted in four districts of Oromia and Southern Nations, Nationalities and People's (SNNP) regional states - Fedis district (East Hararghe Zone) and Miesso district (West Hararghe Zone) from the Oromia region, and Kindo Koysha district (Wolaita Zone) and Meskan district (Gurage Zone) of SNNP region. The rationale behind generating this dataset lies on the fact that there is scanty empirical evidence on the multidimensional performance of agroecology in the country. Available evidence only provides data on limited indicators of sustainability. Hence, there is a lack of comprehensive data on the economic, environmental and social indicators of sustainability and agroecological transition in the context of smallholder farming systems in the country. To fill this gap, the Food and Agriculture Organization of the United Nations (FAO) commissioned a consultancy project that employed the Tool for Agroecological Performance Evaluation (TAPE) to assess several dimensions and indicators of agroecological transitions and generate globally comparable data. A random sample of 619 farms were selected from 12 Kebeles (i.e., the lowest administrative unit), and trained enumerators gathered primary data based on a modified TAPE questionnaire using Kobo Toolbox. Participation of smallholders was on a voluntary basis and informed consent was obtained from the respondents. The survey questionnaire contained information on basic socio-economic and demographic characteristics, access to services and infrastructure, livelihood and Income-Generating Activities (IGAs), social and ecological indicators. Data on the 10 elements of agroecology was also collected. The collected data were entered into a STATA software, cleaned and analyzed through descriptive and inferential statistics. The outputs were summarized in Tables, Charts and Graphs. Since the data contained in this data article are disaggregated by study district, categories of agroecological transition, production typology and land size groups, this can foster the promotion of specific projects and programs that can address expressed needs of smallholder farmers. It can also facilitate agro-ecological based implementation of development interventions to encourage agroecological transition, sustainable development and food systems. The dataset can also enable researchers, practitioners and other decision-makers to make comparative analysis on the economic, environmental and social dimensions of sustainability. The analyzed data is provided in this data article. The raw data used to prepare figures is provided as a supplementary material. A copy of the questionnaire, raw dataset, and description of variables are available online on Mendeley Data.

19.
Sci Total Environ ; 912: 169197, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38101647

RESUMO

Land use change, anthropogenic exploitation and climate change have impacted the flow of services in the Himalayan region. The dominant land uses in the region including natural forest, degraded forest, rubber (Hevea brasiliensis) plantations, Areca catechu plantations, Areca agroforestry and Piper agroforestry were considered for the study. A progressive shift in land use was defined as the conversion and restoration of a less productive system like degraded land to plantations or agroforestry systems. A land use shift was considered retrogressive when it entails the establishment of plantations after clearing natural forests or anthropogenic disturbance of natural forests resulting in forest degradation. The objectives of the current study were to estimate changes in soil properties, stand structure, tree biomass, fine root production and carbon storage following a progressive and retrogressive shift in land usage. The aboveground biomass (105.9 Mg ha-1) was highest in the natural forest, followed by Areca agroforestry (100.2 Mg ha-1) and least in the degraded forest (55.3 Mg ha-1). The aboveground biomass carbon (47.1 Mg ha-1) of Areca agroforestry was comparable with that of natural forest (51.3 Mg ha-1). The highest proportion of passive carbon concentrations was observed under Areca agroforestry, whereas the lowest (4.13 g kg-1) was found under Areca plantations in the 0-25 cm soil depth. With the progressive shift in land use from degraded forest to agroforestry, SOC stocks increased by 27.6 % and 3 % under Piper and Areca agroforests, respectively. SOC stocks decreased by 8.5 % with a shift in land use from natural forests to Areca plantations. The production of fine roots was maximum in the Areca agroforest (13.2 Mg ha-1) and lowest under rubber plantations (4.2 Mg ha-1). The results show that progressive shifts from degraded forest to agroforestry can considerably increase carbon stocks, plant species diversity and multifunctionality than shifts to monoculture plantations thereby supporting improved biodiversity and mitigation of climate change.


Assuntos
Agricultura , Ecossistema , Borracha , Florestas , Solo/química , Carbono/química , Verduras
20.
Sci Total Environ ; 913: 169335, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38103613

RESUMO

Soil erosion on agricultural land is a major threat for food and raw materials production. It has become a major concern in rubber (Hevea brasiliensis) plantations introduced on sloping ground. Alternative agroecological crop management practices must be investigated. One aim of our study was to assess the ability of logging residues (i.e., trunks, branches, leaves and stumps of a clearcut plantation) and of legume cover (Pueraria phaseoloides) to mitigate N, P and K losses through runoff and soil detachment in a young rubber plantation. The other aim was to investigate the relationships of these nutrient losses with soil structure and soil macrofauna diversity. Runoff and soil loss were monitored for 3 years using 1-m2 plots under different practices as regards the management of logging residues and the use or not of a legume. The monitoring started when rubber trees were one-year-old. The planting row, where soil was bare, was the hotspot of soil erosion, with an average runoff of 832 mm y-1 and soil loss of 3.2 kg m-2 y-1. Sowing a legume in the inter-row reduced runoff and soil loss by 88 % and 98 % respectively, compared to bare soil. Spreading logging residues as well as growing a legume cover almost eliminated runoff and soil detachment (19 mm y-1 and 4 g m-2 y-1 respectively). Nutrient losses were negligible as long as the soil surface was covered by a legume crop, with or without logging residues. Total N loss from soil detachment ranged from 0.02 to 0.2 g m-2 y-1, for example. Spreading logging residues in the inter-rows significantly improved soil structure and soil macrofauna diversity compared to bare soil. Nutrient losses from runoff and soil detachment were negatively correlated with improved soil structure and soil macrofauna diversity. We recommend investigating alternative ways to manage planting rows.


Assuntos
Fabaceae , Hevea , Solo/química , Borracha , Agricultura , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...